Molecular mechanisms of manganese mutagenesis.

نویسندگان

  • W S El-Deiry
  • K M Downey
  • A G So
چکیده

The mechanism by which DNA polymerase discriminates between complementary and noncomplementary nucleotides for insertion into a primer terminus has been investigated. Apparent kinetic constants for the insertion of dGTP and dATP into the hook polymer d(C)194-d(G)12 with Escherichia coli DNA polymerase I (large fragment) were determined. The results suggest that the high specificity of base selection by DNA polymerase I is achieved by utilization of both Km and Vmax differences between complementary and noncomplementary nucleotides. The molecular basis for the increased error frequency observed with DNA polymerase I in the presence of Mn2+ has also been investigated. Our studies demonstrate that when Mn2+ is substituted for Mg2+, there is a higher ratio of insertion of incorrect to correct dNTP by the polymerase activity, accompanied by a decreased hydrolysis of a mismatched dNMP relative to a matched dNMP at the primer terminus by the 3',5' exonuclease activity. Kinetic analysis revealed that in the presence of Mn2+, the kcat for insertion of a complementary dNTP is reduced, whereas the catalytic rate for the insertion of a mismatched nucleotide is increased. The apparent Km values for either complementary or noncomplementary nucleotide substrates are not significantly altered when Mg2+ is replaced by Mn2+. The rate of hydrolysis of a mismatched dNMP at the primer terminus is greater in the presence of Mg2+ vs. Mn2+, whereas the rate of hydrolysis of a properly base-paired terminal nucleotide is greater in Mn2+ vs. Mg2+. These studies demonstrate that both the accuracy of base selection by the polymerase activity and the specificity of hydrolysis by the 3',5' exonuclease activity are altered by the substitution of Mn2+ for Mg2+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, Mutagenesis and In-silico Structural Stability Assay of the Model of Superoxide Dismutase of Lactococcus Lactis Subsp. Cremoris MG1363

Background:Characterizing the structure and function of superoxide dismutase (SOD), as an antioxidant enzyme providing opportunities for its application in food supplements. Objectives: In this study, the features of the Manganese-SOD of Lactococcus lactis (SDLL), subsp. cremoris MG1363, as probiotic bacteria, were determined on the ...

متن کامل

Molecular Cloning and Mutagenesis of Rat Glucocerebrosidase Gene

Purpose: The aim of this study was cloning the Gba enzyme in pUCBM21 plasmid, and making frame mutation on it and sequencing it. Materials and methods: mRNA was extracted from mouse spleen and glucocerebrosidase cDNA was synthesized and amplified by PCR with specific primers. cDNA was cloned in pUCBM21 and analyzed by restriction enzymes. A fragment of its sequence was deleted using MscI restr...

متن کامل

Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress.

The perception and subsequent transduction of environmental signals are primary events in the acclimation of living organisms to changes in their environment. Many of the molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Therefore, the genomic information has been exploited in a systematic approach to this problem, performing...

متن کامل

Construction of a recombinant vector for site-directed mutagenesis in Salmonella typhimurium

BACKGROUND: Among all common techniques in sitedirectedmutagenesis, λ Red recombinase system has beenwidely used to knock out chromosomal genes in bacteria. In thismethod, there is always the risk of DNA Linear digestion byhost's restriction enzymes that leads to the low frequency ofrecombination. OBJECTIVES:To overcome this, we constructeda recombinant vector to disrupt phoP gene in Salmonella...

متن کامل

Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase.

Escherichia coli double mutants (sodA sodB) completely lacking superoxide dismutase (SOD) have greatly enhanced mutation rates during aerobic growth. Single mutants lacking manganese SOD (MnSOD) but possessing iron SOD (FeSOD) have a smaller increase, and single mutants lacking FeSOD but possessing MnSOD do not show such an increase. The enhancement of mutagenesis is completely dependent on the...

متن کامل

General method for site-directed mutagenesis in Escherichia coli O18ac:K1:H7: deletion of the inducible superoxide dismutase gene, sodA, does not diminish bacteremia in neonatal rats.

A defined deletion in the Escherichia coli K-12 sodA gene (encoding manganese-superoxide dismutase) linked to a nontransposable selectable marker was generated by transposon Tn5 insertion in combination with in vitro mutagenesis. This mutant allele was used to replace the wild-type sodA gene in an E. coli clinical isolate of serotype O18ac:K1:H7 by bacteriophage P1 transduction. The O18ac:K1:H7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 23  شماره 

صفحات  -

تاریخ انتشار 1984